Octanol-assisted liposome assembly on chip

نویسندگان

  • Siddharth Deshpande
  • Yaron Caspi
  • Anna E. C. Meijering
  • Cees Dekker
چکیده

Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Division of Cell-Sized Liposomes

Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and synthetic biology. Several approaches have been explored to controllably divide liposomes, such as sha...

متن کامل

Sensitive and selective detection of the p53 gene based on a triple-helix magnetic probe coupled to a fluorescent liposome hybridization assembly via rolling circle amplification.

Developing a sensitive and selective sensing platform for the p53 gene and its mutation analysis is essential and may aid in early cancer screening and assessment of prognosis. Here, we developed a highly sensitive and selective p53 gene assay based on the coupling of a triple-helix magnetic probe (THMP) to a fluorescent liposome hybridization assembly, a process initiated by rolling circle amp...

متن کامل

Template assisted highly ordered novel self assembly of micro-reservoirs and its replication.

A novel method is developed for template assisted fabrication of a regular assembly of microcavity arrays. Simple micropatterns on PDMS mold are used to create complex geometries via solvent vapor back pressure in a biodegradable polymer. Cavities are in turn replicated in complimentary PDMS mushroom like microstructures.

متن کامل

Abstract Title: CONTROLLED LIPOSOME FORMATION AND SOLUTE ENCAPSULATION WITH CONTINUOUS-FLOW MICROFLUIDIC HYDRODYNAMIC FOCUSING

Title: CONTROLLED LIPOSOME FORMATION AND SOLUTE ENCAPSULATION WITH CONTINUOUS-FLOW MICROFLUIDIC HYDRODYNAMIC FOCUSING Andreas Jahn, Doctor of Philosophy, 2008 Directed By: Professor Don L. DeVoe, Department of Mechanical Engineering Liposomes enable the compartmentalization of compounds making them interesting as drug delivery systems. A drug delivery system (DDS) is a transport vehicle for a d...

متن کامل

Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents.

We present a microfluidic platform for the synthesis of monodisperse chitosan based nanoparticles via self-assembly at physiological pH. The resultant nanoparticles are shown to encapsulate hydrophobic anticancer drugs while providing a sustainable release profile with high tunability.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016